Model Checking ω-regular Properties for Quantum Markov Chains∗

نویسندگان

  • Yuan Feng
  • Ernst Moritz Hahn
  • Andrea Turrini
  • Shenggang Ying
چکیده

Quantum Markov chains are an extension of classical Markov chains which are labelled with super-operators rather than probabilities. They allow to faithfully represent quantum programs and quantum protocols. In this paper, we investigate model checking ω-regular properties, a very general class of properties (including, e.g., LTL properties) of interest, against this model. For classical Markov chains, such properties are usually checked by building the product of the model with a language automaton. Subsequent analysis is then performed on this product. When doing so, one takes into account its graph structure, and for instance performs different analyses per bottom strongly connected component (BSCC). Unfortunately, for quantum Markov chains such an approach does not work directly, because super-operators behave differently from probabilities. To overcome this problem, we transform the product quantum Markov chain into a single super-operator, which induces a decomposition of the state space (the tensor product of classical state space and the quantum one) into a family of BSCC subspaces. Interestingly, we show that this BSCC decomposition provides a solution to the issue of model checking ω-regular properties for quantum Markov chains. 1998 ACM Subject Classification D.2.4 Software/Program Verification

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-Checking ω-Regular Properties of Interval Markov Chains

We study the problem of model checking Interval-valued Discrete-time Markov Chains (IDTMC). IDTMCs are discrete-time finite Markov Chains for which the exact transition probabilities are not known. Instead in IDTMCs, each transition is associated with an interval in which the actual transition probability must lie. We consider two semantic interpretations for the uncertainty in the transition p...

متن کامل

Computing Conditional Probabilities in Markovian Models Efficiently Extended Version

The fundamentals of probabilistic model checking for Markovian models and temporal properties have been studied extensively in the past 20 years. Research on methods for computing conditional probabilities for temporal properties under temporal conditions is, however, comparably rare. For computing conditional probabilities or expected values under ω-regular conditions in Markov chains, we intr...

متن کامل

Analysis of Probabilistic Processes and Automata Theory

This chapter surveys some basic algorithms for analyzing Markov chains (MCs) and Markov decision processes (MDPs), and discusses their computational complexity. We focus on discrete-time processes, and we consider both finite-state models as well as countably infinite-state models that are finitely-presented. The analyses we will primarily focus on are hitting (reachability) probabilities and ω...

متن کامل

Verifying ω-Regular Properties of Markov Chains

In this work we focus on model checking of probabilistic models. Probabilistic models are widely used to describe randomized protocols. A Markov chain induces a probability measure on sets of computations. The notion of correctness now becomes probabilistic. We solve here the general problem of lineartime probabilistic model checking with respect to ω-regular specifications. As specification fo...

متن کامل

Quantum Markov chains: description of hybrid systems, decidability of equivalence, and model checking linear-time properties

In this paper, we study a model of quantum Markov chains that is a quantum analogue of Markov chains and is obtained by replacing probabilities in transition matrices with quantum operations. We show that this model is very suited to describe hybrid systems that consist of a quantum component and a classical one, although it has the same expressive power as another quantum Markov model proposed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017